LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Use of 18F-FDG PET-CT imaging to determine internal mammary lymph node location for radiation therapy treatment planning in breast cancer patients.

Photo by marceloleal80 from unsplash

PURPOSE Adjuvant internal mammary lymph node (IMN) radiation is often delivered with 2-dimensional techniques that use anatomic landmarks and predetermined depths for field placement and dose specification. In contrast, 3-dimensional… Click to show full abstract

PURPOSE Adjuvant internal mammary lymph node (IMN) radiation is often delivered with 2-dimensional techniques that use anatomic landmarks and predetermined depths for field placement and dose specification. In contrast, 3-dimensional planning uses the internal mammary vessels (IMVs) to localize the IMNs for planning. Our purpose was to determine if localization of the involved IMN (i-IMN) by 18F-labeled fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) offers opportunities to improve treatment. METHODS AND MATERIALS Breast cancer patients (n = 80) who had i-IMNs (n = 112) on PET-CT for initial staging (n = 40) or recurrence (n = 40) were studied. Size, intercostal space (IC), and distance from skin, sternum, and IMVs were recorded. Effects on 2- and 3-dimensional planning were evaluated. RESULTS Most i-IMNs (94.6%) were in the first to third ICs. Few were in the fourth (4.5%) or fifth (0.9%) IC. Mean i-IMN depth was 3.4 cm (range, 1.1-7.3 cm). Prescriptive depths of 4, 5, and 6 cm would result in undertreatment of 25%, 10.7%, and 5.3% of IMNs, respectively. Most IMNs (86.6%) were lateral or adjacent to the sternal edge. Only 13.4% of IMNs were posterior to the sternum. Use of the ipsilateral or contralateral sternal edge for field placement increases the risk of geographic miss or excess normal tissue exposure. Most i-IMNs were adjacent to (83%) or ≤0.5 cm (14%) from the IMV edge. Three (3%) were >0.5 cm beyond the IMV edge. The clinical target volume (CTV) defined by the first to third ICs encompassed 78% of i-IMNs. IMN-CTV coverage of i-IMNs increased with inclusion of the fourth IC (82%), 0.5 cm medial and lateral margin expansion (93%), or both (96.5%). CONCLUSION Two-dimensional treatment techniques risk geographic miss of IMNs and exposure of excess normal tissue to radiation. An IMN-CTV defined by the IMVs from the first to third ICs with 0.5-cm medial and lateral margin expansion encompasses almost all i-IMNs identified on PET-CT imaging. Inclusion of the fourth IC offers modest coverage improvement, and its inclusion should be weighed against potential increase in cardiac exposure. SUMMARY The use of 2-dimensional treatment techniques for adjuvant internal mammary lymph node (IMN) radiation may cause geographic miss of tumor and expose normal tissue to radiation injury. Conformal 3-dimensional planning improves coverage and reduces risk of normal tissue damage by using the internal mammary vessel to define an IMN clinical target volume (CTV). Contouring the IMN-CTV from the first to third intercostal spaces with a 0.5-cm expansion medially and laterally encompasses most IMN. Positron emission tomography-computed tomography may have a role in radiation planning by identifying involved-IMN for dose escalation.

Keywords: imn; treatment; internal mammary; mammary lymph; lymph node; radiation

Journal Title: Practical radiation oncology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.