PURPOSE Chest wall (CW) toxicity is a potentially debilitating complication of stereotactic body radiation therapy for non-small cell lung cancer, occurring in 10% to 40% of patients. Smaller tumor-to-CW distance… Click to show full abstract
PURPOSE Chest wall (CW) toxicity is a potentially debilitating complication of stereotactic body radiation therapy for non-small cell lung cancer, occurring in 10% to 40% of patients. Smaller tumor-to-CW distance has been identified as a risk factor for CW toxicity. We report our experience with individualizing the planning target volume (PTV) along the CW in an effort to reduce the volume of this organ at risk receiving 30 Gy to 50 Gy. METHODS AND MATERIALS We performed an institutional review board-approved retrospective analysis of patients with stage I (T1-2aN0M0) non-small cell lung cancer who received stereotactic body radiation therapy between June 2009 and July 2016. Four-dimensional computed tomography was used for treatment planning. A uniform 5-mm expansion of the internal target volume was generated for the PTV. Areas of overlap with the CW were removed from the PTV. Treatment was delivered with cone beam computed tomography guidance. CW toxicity was assessed per the Common Terminology Criteria for Adverse Events, version 5. Descriptive statistics were used to analyze outcomes. RESULTS The median follow-up time was 36.8 months. A total of 260 tumors were treated in 225 patients. 225 tumors in 203 patients were peripheral. The internal target volumes for 143 tumors (63.6%) were located within 5 mm of the CW. The median total dose was 48 Gy (range, 42-60 Gy) in 4 fractions (range, 3-5 fractions). The overall rate of grade 1 to 2 CW toxicity was 2.2%, and 2.8% for tumors located within 5 mm of the CW. There were no grade 3/4 cases and no increase in local recurrences with the use of a truncated PTV with a 3-year local control of 92.1% (95% confidence interval, 87.4%-96.8%). CONCLUSIONS Truncation of the PTV margin along the CW resulted in a marked reduction of CW toxicity for tumors in close proximity to the CW, with only a 2.8% rate of grade 1 to 2 CW toxicity. Despite PTV reduction, there was no appreciable increase in local failures. A multi-institutional validation of this technique is needed before general incorporation into clinical practice.
               
Click one of the above tabs to view related content.