We present a neurochemical model of unipolar major depressive disorder that makes predictions for optimizing pharmacological treatment of this debilitating neuropsychiatric disorder. We suggest that there are two principal electrophysiological… Click to show full abstract
We present a neurochemical model of unipolar major depressive disorder that makes predictions for optimizing pharmacological treatment of this debilitating neuropsychiatric disorder. We suggest that there are two principal electrophysiological subtypes of depression, with the more common one involving a high excitatory/inhibitory (E/I) electrophysiological ratio, and a less common low E/I subtype. The high E/I subtype is paradoxically a variant of previous conceptions of atypical depression, whereas the low E/I subtype is a variant of melancholic depression. We focus on the ratio of norepinephrine (NE) to serotonin (5HT) as primary determinants of E/I ratio, which have opposing effects on mood regulation. We suggest that high NE/5HT (or E/I) ratio depressions should be treated with pharmacological agents that boost 5HT (such as SSRIs) and/or drugs that reduce noradrenergic transmission (such as clonidine, guanfacine, propranolol, prazosin). In contrast, low NE/5HT (or E/I) depressions should be treated with agents that boost NE (such as most tricyclics) and/or drugs that reduce serotonergic transmission. Our model predicts that the rapidly acting antidepressant ketamine (and possibly scopolamine), which has an acutely excitatory electrophysiological profile that may be followed by sustained increased inhibition, should improve the high NE/5HT subtype and worsen the low subtype.
               
Click one of the above tabs to view related content.