LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scout-view assisted interior digital tomosynthesis (iDTS) based on compressed-sensing theory

Photo by brnkd from unsplash

Abstract Conventional digital tomosynthesis (DTS) based on the filtered-backprojection (FBP) reconstruction requires full field-of-view scan and also relatively dense projections, which results in still high dose for medical imaging purposes.… Click to show full abstract

Abstract Conventional digital tomosynthesis (DTS) based on the filtered-backprojection (FBP) reconstruction requires full field-of-view scan and also relatively dense projections, which results in still high dose for medical imaging purposes. In this work, to overcome these difficulties, we propose a new type of DTS examinations, the so-called scout-view assisted interior DTS (iDTS), in which the x-ray beam span covers only a small region-of-interest (ROI) containing target diagnosis with the help of some scout views and they are used in the reconstruction to add additional information to interior ROI otherwise absent with conventional iDTS reconstruction methods. We considered an effective iterative algorithm based on compressed-sensing theory, rather than the FBP-based algorithm, for more accurate iDTS reconstruction. We implemented the proposed algorithm, performed a systematic simulation and experiment, and investigated the image characteristics. We successfully reconstructed iDTS images of substantially high accuracy and no truncation artifacts by using the proposed method, preserving superior image homogeneity, edge sharpening, and in-plane spatial resolution.

Keywords: view; view assisted; scout view; assisted interior; digital tomosynthesis; idts

Journal Title: Radiation Physics and Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.