LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dispersion of radionuclides from coal-fired brick kilns and concomitant impact on human health and the environment

Photo from wikipedia

Abstract Realizing the probable health implications via the exposures to radionuclides released from coal-fired brick kilns, concentrations of terrestrial radionuclides in feed coal, fly- and bottom ash collected from some… Click to show full abstract

Abstract Realizing the probable health implications via the exposures to radionuclides released from coal-fired brick kilns, concentrations of terrestrial radionuclides in feed coal, fly- and bottom ash collected from some major coal-fired brick kilns of Southern region in Bangladesh were measured using HPGe γ-ray spectrometry. Respective mean activity concentrations (Bq kg−1) for 226Ra, 232Th and 4 K were found to be 36.3 ± 1.8, 26.2 ± 2.1 and 314 ± 18 in feed coal; 60.8 ± 3.9, 36.6 ± 3.9 and 338 ± 19 in fly ash; 54.9 ± 4.0, 39.7 ± 4.6 and 311 ± 18.0 in bottom ash samples. As a result of the combustion process, radionuclide concentration enhancements have been observed in proceeding from feed coal to fly- and bottom-ash. The calculated values of air absorbed dose-rates for fly- and bottom-ash are greater than the world average of 55 nGy/h reported by UNSCEAR, and the Lifetime Cancer Risk (LCR) approaches towards the safe limit recommended by the ICRP. As such, this does flag up a potential concern for those dwelling in nearby areas, especially for the coal workers who normally do not take any protective measures against exposure to ash dust. Multivariate statistical analysis has been used in examining for correlations between the origins of the radionuclides and their influence on the calculated radiological parameters. The measured data indicate significance for human health, also for the scientific community, and could be used for modeling studies in the region.

Keywords: coal fired; health; fired brick; brick kilns; coal

Journal Title: Radiation Physics and Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.