Abstract This paper presents a comprehensive approach to diagnose for faults that may occur during a robotic grit-blasting operation. The approach proposes the use of information collected from multiple sensors… Click to show full abstract
Abstract This paper presents a comprehensive approach to diagnose for faults that may occur during a robotic grit-blasting operation. The approach proposes the use of information collected from multiple sensors (RGB-D camera, audio and pressure transducers) to detect for 1) the real-time position of the grit-blasting spot and 2) the real-time state within the blasting line (i.e. compressed air only). The outcome of this approach will enable a grit-blasting robot to autonomous diagnose for faults and take corrective actions during the blasting operation. Experiments are conducted in a laboratory and in a grit-blasting chamber during real grit-blasting to demonstrate the proposed approach. Accuracy of 95% and above has been achieved in the experiments.
               
Click one of the above tabs to view related content.