LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calcium signals between the ryanodine receptor- and mitochondria critically regulate the effects of arsenite on mitochondrial superoxide formation and on the ensuing survival vs apoptotic signaling

Photo from wikipedia

A low concentration of arsenite (6 h), selectively stimulating the intraluminal crosstalk between the inositol-1, 4, 5-triphosphate receptor and the ryanodine receptor (RyR), increased the mitochondrial transport of RyR-derived Ca2+ through… Click to show full abstract

A low concentration of arsenite (6 h), selectively stimulating the intraluminal crosstalk between the inositol-1, 4, 5-triphosphate receptor and the ryanodine receptor (RyR), increased the mitochondrial transport of RyR-derived Ca2+ through the mitochondrial Ca2+ uniporter. This event was characterized in intact and permeabilized cells, and was shown to be critical for mitochondrial superoxide (mitoO2.-) formation. Inhibition of mitochondrial Ca2+ accumulation therefore prevented the effects of arsenite, in both the mitochondrial (e.g., cardiolipin oxidation) and extramitochondrial (e.g., DNA single- strand breakage) compartments, and suppressed the Nrf2/GSH survival signaling. The effects of arsenite on Ca2+ homeostasis and mitoO2.- formation were reversible, as determined after an additional 10 h incubation in fresh culture medium and by measuring long-term viability. A 16 h continuous exposure to arsenite instead produced a sustained increase in the cytosolic and mitochondrial Ca2+ concentrations, a further increased mitoO2.- formation and mitochondrial permeability transition. These events, followed by delayed apoptosis (48 h), were sensitive to treatments/manipulations preventing mitochondrial Ca2+ accumulation. Interestingly, cells remained viable under conditions in which the deregulated Ca2+ homeostasis was not accompanied by mitoO2.-formation. In conclusion, we report that the fraction of Ca2+ taken up by the mitochondria in response to arsenite derives from the RyR. Mitochondrial Ca2+ appears critical for mitoO2.- formation and for the triggering of both the cytoprotective and apoptotic signaling. The effects of arsenite were reversible, whereas its prolonged exposure caused a sustained increase in mitochondrial Ca2+ and mitoO2.- formation, and the prevalence of the apoptotic vs survival signaling.

Keywords: effects arsenite; formation; receptor; mitochondrial ca2; mitoo2 formation

Journal Title: Redox Biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.