LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arginine methylation of SKN-1 promotes oxidative stress resistance in Caenorhabditis elegans

Photo from wikipedia

Caenorhabditis elegans NRF (NF-E2-related factor)/CNC (Cap'n'collar) transcription factor, Skinhead-1 (SKN-1), is conservatively critical for promoting phase II detoxification gene expressions in response to oxidative stress. SKN-1 activity is controlled by… Click to show full abstract

Caenorhabditis elegans NRF (NF-E2-related factor)/CNC (Cap'n'collar) transcription factor, Skinhead-1 (SKN-1), is conservatively critical for promoting phase II detoxification gene expressions in response to oxidative stress. SKN-1 activity is controlled by well-known phosphorylation and recently-reported O-GlcNAcylation. Whether other kinds of posttanslational modifications of SKN-1 occur and influence its function remains elusive. Here, we found arginines 484 and 516 (R484/R516) of SKN-1 were asymmetrically dimethylated by PRMT-1. Oxidative stress enhanced the binding of PRMT-1 to SKN-1. Consequently, asymmetrical dimethylation of arginines on SKN-1 was elevated. Loss of prmt-1 or disruption of R484/R516 dimethylation decreased the enrichment of SKN-1 on the promoters of SKN-1-driven phase II detoxification genes, including gamma-glutamine cysteine synthetase gcs-1, glutathione S-transferases gst-7 and gst-4, which resulted in reduced ability of worms to defense against oxidative stress. These findings have important implications for investigating the physiological and pathological functions of arginine methylation on conserved NRF/CNC transcription factors in human diseases related to oxidative stress response.

Keywords: skn; caenorhabditis elegans; arginine methylation; oxidative stress

Journal Title: Redox Biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.