LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis

Photo from archive.org

Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular… Click to show full abstract

Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS. A growing body of evidence supports a link between excessive Nox-derived ROS and numerous chronic diseases (including fibrotic disease), which is most prevalent among the elderly population. In this review, we examine the evidence for Nox isoforms in the pathogenesis of IPF, and the potential to target this enzyme family for the treatment of IPF and related fibrotic disorders. A better understanding of the Nox-mediated redox imbalance in aging may be critical to the development of more effective therapeutic strategies for age-associated fibrotic disorders. Strategies aimed at specifically blocking the source(s) of ROS through Nox inhibition may prove to be more effective as anti-fibrotic therapies, as compared to antioxidant approaches. This review also discusses the potential of Nox-targeting therapeutics currently in development.

Keywords: fibrosis; oxidases pathophysiology; nadph oxidases; pulmonary fibrosis; age associated

Journal Title: Redox Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.