LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vivo AAV delivery of glutathione reductase gene attenuates anti-aging gene klotho deficiency-induced kidney damage

Photo from wikipedia

Objective Klotho is an aging-suppressor gene which leads to accelerated aging when disrupted. This study was designed to investigate whether glutathione reductase (GR), a critical intracellular antioxidant enzyme, is involved… Click to show full abstract

Objective Klotho is an aging-suppressor gene which leads to accelerated aging when disrupted. This study was designed to investigate whether glutathione reductase (GR), a critical intracellular antioxidant enzyme, is involved in the pathogenesis of kidney damages associated with accelerated aging in Klotho-haplodeficient (KL+/–) mice. Methods and results Klotho-haplodeficient (KL+/–) mice and WT mice were used. We found that Klotho haplodeficiency impaired kidney function as evidenced by significant increases in plasma urea and creatinine and a decrease in urinary creatinine in KL+/– mice. The expression and activity of GR was decreased significantly in renal tubular epithelial cells of KL+/– mice, suggesting that Klotho deficiency downregulated GR. We constructed adeno-associated virus 2 (AAV2) carrying GR full-length cDNA (AAV-GR). Interestingly, in vivo AAV-GR delivery significantly improved Klotho deficiency-induced renal functional impairment and structural remodeling. Furthermore, in vivo expression of GR rescued the downregulation of the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, which subsequently diminished oxidative damages in kidneys, as evidenced by significant decreases in renal 4-HNE expression and urinary 8-isoprostane levels in KL mice. Conclusion This study provides the first evidence that Klotho deficiency-induced kidney damage may be partly attributed to downregulation of GR expression. In vivo delivery of AAV-GR may be a promising therapeutic approach for aging-related kidney damage.

Keywords: kidney; klotho deficiency; gene; glutathione; deficiency induced

Journal Title: Redox Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.