LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury

Photo by art_almighty from unsplash

Pathologically, blood-spinal-cord-barrier (BSCB) disruption after spinal cord injury (SCI) leads to infiltration of numerous peripheral macrophages into injured areas and accumulation around newborn vessels. Among the leaked macrophages, M1-polarized macrophages… Click to show full abstract

Pathologically, blood-spinal-cord-barrier (BSCB) disruption after spinal cord injury (SCI) leads to infiltration of numerous peripheral macrophages into injured areas and accumulation around newborn vessels. Among the leaked macrophages, M1-polarized macrophages are dominant and play a crucial role throughout the whole SCI process. The aim of our study was to investigate the effects of M1-polarized bone marrow-derived macrophages (M1-BMDMs) on vascular endothelial cells and their underlying mechanism. Microvascular endothelial cell line bEnd.3 cells were treated with conditioned medium or exosomes derived from M1-BMDMs, followed by evaluations of endothelial-to-mesenchymal transition (EndoMT) and mitochondrial function. After administration, we found conditioned medium or exosomes from M1-BMDMs significantly promoted EndoMT of vascular endothelial cells in vitro and in vivo, which aggravated BSCB disruption after SCI. In addition, significant dysfunction of mitochondria and accumulation of reactive oxygen species (ROS) were also detected. Furthermore, bioinformatics analysis demonstrated that miR-155 is upregulated in both M1-polarized macrophages and microglia. Experimentally, exosomal transfer of miR-155 participated in M1-BMDMs-induced EndoMT and mitochondrial ROS generation in bEnd.3 cells, and subsequently activated the NF-κB signaling pathway by targeting downstream suppressor of cytokine signaling 6 (SOCS6), and suppressing SOCS6-mediated p65 ubiquitination and degradation. Finally, a series of rescue assay further verified that exosomal miR155/SOCS6/p65 axis regulated the EndoMT process and mitochondrial function in vascular endothelial cells. In summary, our work revealed a potential mechanism describing the communications between macrophages and vascular endothelial cells after SCI which could benefit for future research and aid in the development of potential therapies for SCI.

Keywords: vascular endothelial; mir 155; mitochondrial function; endothelial cells; polarized macrophages; spinal cord

Journal Title: Redox Biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.