LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inorganic nitrate and nitrite ameliorate kidney fibrosis by restoring lipid metabolism via dual regulation of AMP-activated protein kinase and the AKT-PGC1α pathway

Photo from wikipedia

Background Renal fibrosis, associated with oxidative stress and nitric oxide (NO) deficiency, contributes to the development of chronic kidney disease and renal failure. As major energy source in maintaining renal… Click to show full abstract

Background Renal fibrosis, associated with oxidative stress and nitric oxide (NO) deficiency, contributes to the development of chronic kidney disease and renal failure. As major energy source in maintaining renal physiological functions, tubular epithelial cells with decreased fatty acid oxidation play a key role in renal fibrosis development. Inorganic nitrate, found in high levels in certain vegetables, can increase the formation and signaling by bioactive nitrogen species, including NO, and dampen oxidative stress. In this study, we evaluated the therapeutic value of inorganic nitrate treatment on development of kidney fibrosis and investigated underlying mechanisms including regulation of lipid metabolism in tubular epithelial cells. Methods Inorganic nitrate was supplemented in a mouse model of complete unilateral ureteral obstruction (UUO)-induced fibrosis. Inorganic nitrite was applied in transforming growth factor β-induced pro-fibrotic cells in vitro. Metformin was administrated as a positive control. Fibrosis, oxidative stress and lipid metabolism were evaluated. Results Nitrate treatment boosted the nitrate-nitrite-NO pathway, which ameliorated UUO-induced renal dysfunction and fibrosis in mice, represented by improved glomerular filtration and morphological structure and decreased renal collagen deposition, pro-fibrotic marker expression, and inflammation. In human proximal tubule epithelial cells (HK-2), inorganic nitrite treatment prevented transforming growth factor β-induced pro-fibrotic changes. Mechanistically, boosting the nitrate-nitrite-NO pathway promoted AMP-activated protein kinase (AMPK) phosphorylation, improved AKT-mediated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) activity and restored mitochondrial function. Accordingly, treatment with nitrate (in vivo) or nitrite (in vitro) decreased lipid accumulation, which was associated with dampened NADPH oxidase activity and mitochondria-derived oxidative stress. Conclusions Our findings indicate that inorganic nitrate and nitrite treatment attenuates the development of kidney fibrosis by targeting oxidative stress and lipid metabolism. Underlying mechanisms include modulation of AMPK and AKT-PGC1α pathways.

Keywords: nitrate nitrite; lipid metabolism; inorganic nitrate; fibrosis; kidney

Journal Title: Redox Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.