Different metal alloys can react highly exothermically and reversibly with hydrogen to form metal hydrides. Based on these reactions several application have been developed, e.g. in fuel cell, in storage… Click to show full abstract
Different metal alloys can react highly exothermically and reversibly with hydrogen to form metal hydrides. Based on these reactions several application have been developed, e.g. in fuel cell, in storage for hydrogen gas and in sorption heat pumps. By exploiting the thermodynamical properties of some metal hydriding alloys, cooling energy can be generated by using renewable, sustainable and/or disposable energy sources. However, hydriding alloys show some limitations in their behaviour mainly regarding their intrinsic low thermal conductivity and mechanical stability during the hydriding process. A proper management of these issues is required in practical applications in particular when the metal hydrides have to be stably packed as fixed beds with good mechanical stability, high thermal conductivity, fast kinetics, reproducibility, durability.
               
Click one of the above tabs to view related content.