LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation

Photo from wikipedia

Abstract The addition of nanoparticles in a base fluid can enhance its optical properties, in particular its absorption properties. Thus, nanofluids can be successfully used in solar collectors to absorb… Click to show full abstract

Abstract The addition of nanoparticles in a base fluid can enhance its optical properties, in particular its absorption properties. Thus, nanofluids can be successfully used in solar collectors to absorb the solar radiation in their volume and avoid using an absorber plate. This paper investigates the application of aqueous suspensions as volumetric absorber in a concentrating direct absorption solar collector: a suspension of single wall carbon nanohorns (SWCNHs) in water is chosen as the nanofluid. A model of a solar receiver with a planar geometry to be installed in a parabolic trough concentrator is developed: the radiative transfer equation in participating medium and the energy equation are numerically solved to predict the thermal performance of the receiver. The developed model is capable to predict the temperature distribution, heat transfer rate and penetration distance of the concentrated solar radiation inside the nanofluid volume. The simulated performance of the direct absorption receiver has been compared with calculations and experimental data of two surface absorption conventional receivers under the same operating conditions.

Keywords: absorption; absorption solar; direct absorption; solar radiation; receiver

Journal Title: Renewable Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.