LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling

Photo from wikipedia

Solar assisted absorption chiller is one of efficient cooling production systems for large cooling capacities. The main drawback of this system is that in addition to the electricity consumption, it… Click to show full abstract

Solar assisted absorption chiller is one of efficient cooling production systems for large cooling capacities. The main drawback of this system is that in addition to the electricity consumption, it demands for a lot of heat in relatively high temperature range of 90–120 °C, though the solar system may provide a significant portion of this heating demand. On the other hand, in gas transmission systems, there are some expansion stations in which gas pressure is reduced considerably and this pressure drop causes temperature collapse in gas stream. Power productive gas expansion station (PPGES) is the most recent design proponed for these stations in which the unit is equipped with power generation systems. In this work, taking advantage of this temperature fall for cooling production is proposed by coupling the station with an absorption chiller. In this case, the chiller could also provide the heating demand of the expansion station. In order to evaluate the effectiveness of the proposed configuration, it is simulated for a case study in Denmark, i.e. Aarhus University (AU) hospital absorption chiller and Viborg gas station. The results show that the expansion station could provide an annual cooling production contribution of 27%. In addition, the paper presents an extensive economic assessment to prove the impact of the proposed system economically. The results show a great enhancement in the levelized cost of energy (LCOE) of the case study in case of employing the hybrid system instead of the conventional chiller.

Keywords: expansion; gas; power; absorption chiller; chiller

Journal Title: Renewable Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.