LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation issues of PEM electrolysis MEAs

Photo by boxedwater from unsplash

Abstract One of main challenge of proton exchange membrane (PEM) water electrolysis is the achievement of a long-term durability exceeding 100 khours. Accordingly, degradation mechanisms of membrane electrode assemblies (MEAs)… Click to show full abstract

Abstract One of main challenge of proton exchange membrane (PEM) water electrolysis is the achievement of a long-term durability exceeding 100 khours. Accordingly, degradation mechanisms of membrane electrode assemblies (MEAs) and stack components of PEM electrolysers deserve large attention. An important objective of the EU ELECTROHYPEM project was to develop components for PEM electrolysers with enhanced activity and stability in order to reduce stack and system costs and to improve efficiency, performance and durability. The focus of the project was concerning mainly with electrocatalysts and membranes development and validation of these materials in a PEM electrolyser. In this work, a first set of MEAs, used for 3500–5700 h in a PEM electrolyser, was investigated using electrochemical and physico-chemical techniques. The goal was to individuate key degradation issues and to provide a reliable estimation of the MEA endurance under real life operation. Specific approaches to mitigate the degradation mechanisms are discussed.

Keywords: degradation; electrolysis meas; pem electrolysis; issues pem; degradation issues

Journal Title: Renewable Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.