LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydro-abrasive erosion in Pelton turbine injectors: A numerical study

Photo from wikipedia

Abstract Numerical simulations were performed to investigate how the design and the operation conditions of a Pelton turbine injector affect its vulnerability to hydro-abrasive erosion, alongside with its flow control… Click to show full abstract

Abstract Numerical simulations were performed to investigate how the design and the operation conditions of a Pelton turbine injector affect its vulnerability to hydro-abrasive erosion, alongside with its flow control capacity. Use was made of a Volume Of Fluid (VOF) model for simulating the free nozzle jet, a Lagrangian particle tracking model for reproducing the trajectories of the solid particles, and two erosion models for estimating the mass removal. The comparison against earlier studies and the experimental evidence, integrated with a careful sensitivity analysis, gave strength to the reliability of the numerical model. Nozzle seat and needle were the injector components most vulnerable to erosion. As the valve was closing, the erosion of the needle strongly increased, whilst that of the nozzle seat remained broadly constant. The influence of the injector design was also explored, suggesting that a reduction of the needle vertex angle is likely to enhance the risk of erosive wear. Finally, it was found that the possibility to condense the effects of the needle stroke and the needle vertex angle in a single parameter (i.e. the effective opening area) is no more allowed when hydro-abrasive erosion is considered, thereby assessing the need for case-specific wear prediction analyses.

Keywords: abrasive erosion; hydro abrasive; erosion pelton; erosion; pelton turbine

Journal Title: Renewable Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.