LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison studies on pore development mechanisms of activated hard carbons from polymeric resins and their applications for electrode materials

Photo from wikipedia

Abstract In this study, activated polymer-based hard carbons (APHs) were prepared for supercapacitor electrode applications under various carbonization and activation conditions. The crystallite size of the APHs was adjusted by… Click to show full abstract

Abstract In this study, activated polymer-based hard carbons (APHs) were prepared for supercapacitor electrode applications under various carbonization and activation conditions. The crystallite size of the APHs was adjusted by changing the heating rate during the carbonization process. The surface morphologies and structural characteristics of the APHs were observed by SEM and XRD, respectively. The N2 adsorption isotherm characteristics at 77 K were confirmed by BET and BJH equations. From the results, the specific surface areas and total pore volumes of the APHs were determined to be 790–1620 m2/g and 0.31–0.68 cm3/g, respectively. It was also observed that pore structure depended on crystallite size and CO2 activation conditions. Also, the carbonization conditions could control the crystal structure and pore structure of the APHs. A small crystallite size produced APHs with the high specific surface area, and large crystallite size produced APHs with uniform pore size distribution. The analysis of electrochemical characteristics also found that the specific capacity increased from 8 to 108 F/g. Based on these results, we were able to determine the pore characteristics of APHs by controlling the carbonization and activation conditions, which consequently allowed us to manufacture the APHs with advanced electrochemical properties.

Keywords: activation conditions; comparison studies; hard carbons; crystallite size; pore; size

Journal Title: Renewable Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.