LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical simulation of a heat pump assisted solar dryer for continental climates

Photo from wikipedia

A numerical model has been proposed in this work for predicting the energy performance of a heat pump assisted solar dryer under continental climates. The model is based on energy… Click to show full abstract

A numerical model has been proposed in this work for predicting the energy performance of a heat pump assisted solar dryer under continental climates. The model is based on energy and mass balance. The energy performance comparison between heat pump dryer, solar dryer and heat pump assisted solar dryer are presented. The simulation was performed for four different climatic conditions of Almaty city in Kazakhstan. The simulation results showed that, the heat pump assisted solar dryer is more energy efficient when compared to the conventional solar dryers. It is also confirmed that, the conventional solar dryers are not suitable for continental climatic conditions having low ambient temperatures. The heat pump dryer reduces the initial moisture content of banana (on wet basis) from about 74% to the final moisture content (on wet basis) of about 19% in 21 h. Similarly, the solar dryer reduces the initial moisture content (wet basis) from about 74% to the final moisture content (wet basis) of about 20% in 35 h. The specific moisture extraction rate and coefficient of performance of a heat pump assisted solar dryer are estimated to be about 0.6 kg/kWh and 2.72, respectively.

Keywords: pump assisted; heat pump; solar dryer; dryer; assisted solar

Journal Title: Renewable Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.