LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alkaline aqueous solution of sodium decahydro-closo-decaborate Na2B10H10 as liquid anodic fuel

Photo by austriannationallibrary from unsplash

Abstract The potential of the decahydro-closo-decaborate anion B10H102− in alkaline aqueous solution as anodic fuel was investigated by using cyclic voltammetry and three different bulk metal electrodes (platinum, gold and… Click to show full abstract

Abstract The potential of the decahydro-closo-decaborate anion B10H102− in alkaline aqueous solution as anodic fuel was investigated by using cyclic voltammetry and three different bulk metal electrodes (platinum, gold and silver). The sodium salt NaB10H10 was first synthesized, fully characterized and assessed for its relative stability in alkaline medium for 25 days. Then, oxidation of B10H102− in alkaline aqueous solution was studied. With platinum, the electrochemical activity is nil. With gold and silver, oxidation takes place at >0 V vs. SCE, suggesting direct oxidation of B10H102−. A current density of e.g. 15.1 mA cm−2 at 0.51 V vs. SCE is produced, supporting an electrocatalytically activity for both electrodes. There is even some reversibility of the process (i.e. reduction of intermediate species) with silver. The most important oxidation products were identified as being B7-based anions for both silver and gold. Such results suggest the occurrence of partial oxidative degradation of B10H102− at positive potential and may open new application prospects to polyborate anions.

Keywords: alkaline aqueous; anodic fuel; closo decaborate; decahydro closo; aqueous solution

Journal Title: Renewable Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.