Abstract The potential of the decahydro-closo-decaborate anion B10H102− in alkaline aqueous solution as anodic fuel was investigated by using cyclic voltammetry and three different bulk metal electrodes (platinum, gold and… Click to show full abstract
Abstract The potential of the decahydro-closo-decaborate anion B10H102− in alkaline aqueous solution as anodic fuel was investigated by using cyclic voltammetry and three different bulk metal electrodes (platinum, gold and silver). The sodium salt NaB10H10 was first synthesized, fully characterized and assessed for its relative stability in alkaline medium for 25 days. Then, oxidation of B10H102− in alkaline aqueous solution was studied. With platinum, the electrochemical activity is nil. With gold and silver, oxidation takes place at >0 V vs. SCE, suggesting direct oxidation of B10H102−. A current density of e.g. 15.1 mA cm−2 at 0.51 V vs. SCE is produced, supporting an electrocatalytically activity for both electrodes. There is even some reversibility of the process (i.e. reduction of intermediate species) with silver. The most important oxidation products were identified as being B7-based anions for both silver and gold. Such results suggest the occurrence of partial oxidative degradation of B10H102− at positive potential and may open new application prospects to polyborate anions.
               
Click one of the above tabs to view related content.