LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimation of global horizontal irradiance using satellite-derived data across Middle East-North Africa: The role of aerosol optical properties and site-adaptation methodologies

Photo from wikipedia

Abstract Middle East – North Africa (MENA) region is characterized by increasing energy demand combined with high energy costs and short reserves of fossil fuels. Hence, the knowledge of the… Click to show full abstract

Abstract Middle East – North Africa (MENA) region is characterized by increasing energy demand combined with high energy costs and short reserves of fossil fuels. Hence, the knowledge of the spatial and temporal variability of Global Horizontal Irradiance (GHI) is necessary for assessing the efficiency of alternative energy sources. In this study, satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS, versions 6 and 6.1) and radiative transfer model simulations are used to evaluate the effect of aerosol optical properties on GHI under cloud-free conditions in the MENA region. The modeled GHI is validated against ground-based measurements at six MENA sites. Due to induced uncertainties in modeled GHIs, two site-adaptation methodologies (Empirical Quantile Mapping-EQM and Linear Least Squares-LIN) are further evaluated to diminish the systematic and dispersion errors. EQM is revealed to be more efficient, causing a significant correction to the statistical distribution of the modeled GHI. For almost all sites, modeled GHI values present the best statistical results when MODIS version 6.1 is used.

Keywords: global horizontal; east north; aerosol optical; north africa; middle east; horizontal irradiance

Journal Title: Renewable Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.