LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions

Photo from wikipedia

Abstract China, India, and the USA are the world’s biggest energy consumers and CO2 emitters. Being the leading contributors to climate change, these economies are also at the core of… Click to show full abstract

Abstract China, India, and the USA are the world’s biggest energy consumers and CO2 emitters. Being the leading contributors to climate change, these economies are also at the core of environmental solutions. This paper investigates the causal relationship among solar and wind energy production, coal consumption, economic growth, and CO2 emissions for these three countries. To do so, we use an advanced methodology in Machine Learning to verify the predictive causal linkages among variables. The Causal Direction from Dependency (D2C) algorithm set CO2 emissions as the target variable. The obtained results were disaggregated and estimated in a supervised prediction model. The findings, confirmed by three different Machine Learning procedures, showed an interesting output. While a reduction in overall carbon emissions is predicted in China and the US (resulting from the intensive use of renewable sources of energy), India displays critical predictions of a rise in CO2 emissions. This indicates that curbing CO2 emissions cannot be achieved without conducting a comprehensive shift from fossil to renewable resources, although China and the U.S. present a more promising path to sustainability than India. Being an emerging renewable energy leader, India should further enhance the use of low-carbon sources in its power supply and limit its dependence on coal.

Keywords: machine learning; relationship among; energy; co2 emissions; coal

Journal Title: Renewable Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.