LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach

Photo from wikipedia

Abstract This work proposes and employs a mixed-complexity modeling approach to creating a 3D computational fluid dynamics (CFD) model to predict the syngas production from Miscanthus briquettes in a two-stage… Click to show full abstract

Abstract This work proposes and employs a mixed-complexity modeling approach to creating a 3D computational fluid dynamics (CFD) model to predict the syngas production from Miscanthus briquettes in a two-stage downdraft gasifier operating with different gasification fluids. The study was performed at steady state regime in the Ansys Fluent environment considering the non-premixed combustion model. A probability density function is also included as a tool for the description of the chemical kinetics to predict the syngas composition following the main chemical reactions involved in the gasification process. The goal of this approach is to reduce the computational cost while still providing accurate predictions. In comparison to experimental gasification with air, the model correctly predicts the temperature profile inside the reactor, the composition of the syngas (CO, H2 and CH4), and therefore the lower heating value (LHV). For cases involving the use of saturated steam and oxygen as gasification fluids, the model predicted key species concentrations in the gasification zone and the reactor core and accurately described the significant increase in the LHV of the syngas. This approach opens the possibility of studying the gasification process in moving-bed reactors using different gasification fluids and feedstocks based on their elemental and proximate analysis.

Keywords: downdraft gasifier; stage downdraft; approach; gasification; modeling approach; two stage

Journal Title: Renewable Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.