LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Embryonic vascular disruption adverse outcomes: Linking high throughput signaling signatures with functional consequences.

Photo from archive.org

Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking… Click to show full abstract

Embryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay. Both were identified as putative vascular disruptive compounds (pVDCs) in ToxCastDB and disrupted angiogenesis and embryogenesis in the functional assays. Differences were observed in potency and adverse effects: 5HPP-33 was embryolethal (WEC and ZET); TNP-470 produced caudal defects at lower concentrations. This study demonstrates how a tiered approach using HTS signatures and complex functional in vitro assays might be used to prioritize further in vivo developmental toxicity testing.

Keywords: vascular disruption; disruption; disruption adverse; embryonic vascular; high throughput

Journal Title: Reproductive toxicology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.