LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic prediction of patient outcomes during ongoing cardiopulmonary resuscitation.

Photo from wikipedia

PURPOSE The probability of the return of spontaneous circulation (ROSC) and subsequent favourable outcomes changes dynamically during advanced cardiac life support (ACLS). We sought to model these changes using time-to-event… Click to show full abstract

PURPOSE The probability of the return of spontaneous circulation (ROSC) and subsequent favourable outcomes changes dynamically during advanced cardiac life support (ACLS). We sought to model these changes using time-to-event analysis in out-of-hospital cardiac arrest (OHCA) patients. METHODS Adult (≥18 years old), non-traumatic OHCA patients without prehospital ROSC were included. Utstein variables and initial arterial blood gas measurements were used as predictors. The incidence rate of ROSC during the first 30min of ACLS in the emergency department (ED) was modelled using spline-based parametric survival analysis. Conditional probabilities of subsequent outcomes after ROSC (1-week and 1-month survival and 6-month neurologic recovery) were modelled using multivariable logistic regression. The ROSC and conditional probability models were then combined to estimate the likelihood of achieving ROSC and subsequent outcomes by providing k additional minutes of effort. RESULTS A total of 727 patients were analyzed. The incidence rate of ROSC increased rapidly until the 10th minute of ED ACLS, and it subsequently decreased. The conditional probabilities of subsequent outcomes after ROSC were also dependent on the duration of resuscitation with odds ratios for 1-week and 1-month survival and neurologic recovery of 0.93 (95% CI: 0.90-0.96, p<0.001), 0.93 (0.88-0.97, p=0.001) and 0.93 (0.87-0.99, p=0.031) per 1-min increase, respectively. Calibration testing of the combined models showed good correlation between mean predicted probability and actual prevalence. CONCLUSIONS The probability of ROSC and favourable subsequent outcomes changed according to a multiphasic pattern over the first 30min of ACLS, and modelling of the dynamic changes was feasible.

Keywords: probability; resuscitation dynamic; subsequent outcomes; resuscitation; dynamic prediction; prediction patient

Journal Title: Resuscitation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.