LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced thermoelectric properties in boron nitride quantum-dot

Photo by briangarrityphoto from unsplash

Abstract We have investigated the ballistic thermoelectric properties in boron nitride quantum dots by using the nonequilibrium Green’s function approach and the Landauer transport theory. The result shows that the… Click to show full abstract

Abstract We have investigated the ballistic thermoelectric properties in boron nitride quantum dots by using the nonequilibrium Green’s function approach and the Landauer transport theory. The result shows that the phonon transport is substantially suppressed by the interface in the quantum dots. The resonant tunneling effect of electron leads to the fluctuations of the electronic conductance. It enhances significantly the Seebeck coefficient. Combined with the low thermal conductance of phonon, the high thermoelectric figure of merit ZT ∼0.78 can be obtained at room temperature T = 300 K and ZT ∼0.95 at low temperature T = 100 K. It is much higher than that of graphene quantum dots with the same geometry parameters, which is ZT ∼0.29 at room temperature T = 300 K and ZT ∼0.48 at low temperature T = 100 K. The underlying mechanism is that the boron nitride quantum dots possess higher thermopower and lower phonon thermal conductance than the graphene quantum dots. Thus the results indicate that the thermoelectric properties of boron nitride can be significantly enhanced by the quantum dot and are better than those of graphene.

Keywords: properties boron; thermoelectric properties; nitride quantum; boron nitride; quantum dot; quantum dots

Journal Title: Results in physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.