Abstract This paper deals with the luminescence characteristics of an analogue of the mineral component of dental enamel of the nanocrystalline B-type carbonate-substituted hydroxyapatite (CHAP) with 3D defects (i.e. nanopores… Click to show full abstract
Abstract This paper deals with the luminescence characteristics of an analogue of the mineral component of dental enamel of the nanocrystalline B-type carbonate-substituted hydroxyapatite (CHAP) with 3D defects (i.e. nanopores of ∼2–5 nm) on the nanocrystalline surface. The laser-induced luminescence (LIL) of the synthesized CHAP samples was in the range of ∼515 nm (∼2.4 eV) and is due to CO3 groups replacing the PO4 group. It was found that the intensity of the luminescence of the CHAP is caused by structurally incorporated CO3 groups in the HAP structure. Furthermore, the intensity of the luminescence also decreases as the number of the above intracentre defects (CO3) in the apatite structure declines. These results are potentially promising for developing the foundations for precise methods for the early detection of caries in human solid dental tissue.
               
Click one of the above tabs to view related content.