LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2D slab models of TiO2 nanotubes for simulation of water adsorption: Validation over a diameter range

Photo from wikipedia

Abstract Currently a lot of attention is paid to 1D nanomaterials due to their advantages in comparison to bulk materials. They offer broad possibilities of application, including photocatalytic water splitting.… Click to show full abstract

Abstract Currently a lot of attention is paid to 1D nanomaterials due to their advantages in comparison to bulk materials. They offer broad possibilities of application, including photocatalytic water splitting. Simulations of water adsorption on such materials with computationally costly theoretical methods, such as ab initio molecular dynamics, are needed for improvement of such photocatalysts’ efficiency. Still, it is very problematic to treat a real-size nanotube at available computational power. The existing nanotube surface approximations are not accurate and universal enough. We have already proposed methods for 2D model construction out of TiO2 nanotubes of (101) and (001) configuration at the moderately expensive DFT level. The idea behind was to provide a partial description of nanotubular strain by applying lattice constants from nanotubes to slab models, and preserving geometry motifs. We use water adsorption energy, valence band maximum and conduction band minimum positions, as well as DOS shape as criteria for model validation. Our previous work was limited only to specific variants of nanotubes and water adsorption. In this work we establish these novel approaches along a wide nanotube diameter range, in particular for water adsorption studies. We demonstrate that the 2D models do not impose critical compromises in terms of accuracy, and therefore allow calculations of much larger nanotubes than common approaches do.

Keywords: slab models; water adsorption; water; diameter range; tio2 nanotubes

Journal Title: Results in physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.