LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and electronic properties of medium-sized beryllium doped magnesium BeMg clusters and their anions

Photo by courtneywentz from unsplash

Abstract Bimetallic clusters have attracted much attention because of the structural and property changes that occur: cluster size and doping. Here, we performed a structural search of the global minimum… Click to show full abstract

Abstract Bimetallic clusters have attracted much attention because of the structural and property changes that occur: cluster size and doping. Here, we performed a structural search of the global minimum for bimetallic BeMgn0/− (n = 10–20) clusters by utilizing efficient CALYPSO structural searching program with subsequent DFT calculations. A large number of low energetic isomers converge and the most stable structures are confirmed by comparing the total energies for different cluster sizes. Satisfactory agreement between theoretical and experimental PES spectra demonstrates the validity of our predicted global minimum structures. It is found that the most stable structures of BeMgn0/− clusters are filled cage-like frameworks at n = 10–20. The localized position of Be atoms changes from completely encapsulated sites to surface sites, after which the position reverts to the caged Mg motif. In all BeMgn0/− clusters, the charge transfers from the Mgn motif to Be atoms. Increasing occupations of p orbitals manifest their increasing metallic behaviors. A stability analysis revealed that the D4d symmetric BeMg16 caged structure with one centred Be atom has robust stability, which can be because BeMg16 possesses a closed electronic shell of 1S21P61D101F42S21F10 filled with 34 valence electrons and strong Be-Mg bonds due to s-p hybridization. This finding is supported by multi-centre bonds and Mayer bond order analyses.

Keywords: medium sized; bemgn0 clusters; sized beryllium; structural electronic; electronic properties; properties medium

Journal Title: Results in Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.