Abstract Agricultural monitoring systems require spatio-temporal information on widely cultivated staple crops like rice. More emphasis has been made on area estimation and crop detection than on the temporal aspects… Click to show full abstract
Abstract Agricultural monitoring systems require spatio-temporal information on widely cultivated staple crops like rice. More emphasis has been made on area estimation and crop detection than on the temporal aspects of crop cultivation, but seasonal and temporal information such as i) crop duration, ii) date of crop establishment and iii) cropping intensity are as important as area for understanding crop production. Rice cropping systems are diverse because genetic, environmental and management factors (G × E × M combinations) influence the spatio-temporal patterns of cultivation. We present a rule based algorithm called PhenoRice for automatic extraction of temporal information on the rice crop using moderate resolution hypertemporal optical imagery from MODIS. Performance of PhenoRice against spatially and temporally explicit reference information was tested in three diverse sites: rice-fallow (Italy), rice-other crop (India) and rice-rice (Philippines) systems. Regional product accuracy assessments showed that PhenoRice made a conservative, spatially representative and robust detection of rice cultivation in all sites ( r 2 between 0.75 and 0.92) and crop establishment dates were in close agreement with the reference data ( r 2 = 0.98, Mean Error = 4.07 days, Mean Absolute Error = 9.95 days, p
               
Click one of the above tabs to view related content.