LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence

Photo from wikipedia

Abstract Solar-induced chlorophyll fluorescence (SIF) has emerged as a leading approach for remote sensing of gross primary productivity (GPP). While SIF has an intrinsic, underlying relationship with canopy light capture… Click to show full abstract

Abstract Solar-induced chlorophyll fluorescence (SIF) has emerged as a leading approach for remote sensing of gross primary productivity (GPP). While SIF has an intrinsic, underlying relationship with canopy light capture and light use efficiency, these physiological relationships are obscured by the fact that satellites observe a small and variable fraction of total emitted canopy SIF. Upon emission, most SIF photons are reabsorbed or scattered within the canopy, preventing their observation remotely. The complexities of the radiative transfer process, which vary across time and space, limit our ability to reliably infer physiological processes from SIF observations. Here, we propose an approach for estimating the fraction of total emitted near-infrared SIF (760 nm) photons that escape the canopy by combining the near-infrared reflectance of vegetation (NIRV) and the fraction of absorbed photosynthetically active radiation (fPAR), two widely available remote sensing products. Our approach relies on the fact that NIRV is resilient against soil background contamination, allowing us to reliably calculate the bidirectional reflectance factor of vegetation, which in turn conveys information about the escape ratio of SIF photons. Our NIRV-based approach explains variations in the escape ratio with an R2 of 0.91 and an RMSE of 1.48% across a series of simulations where canopy structure, soil brightness, and sun-sensor-canopy geometry are varied. The approach is applicable to conditions of low leaf area index and fractional vegetation cover. We show that correcting for the escape ratio of SIF using NIRV provides robust estimates of total emitted SIF, providing for the possibility of studying physiological variations of fluorescence yield at the global scale.

Keywords: near infrared; approach; fluorescence; sif; escape ratio

Journal Title: Remote Sensing of Environment
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.