Abstract The impacts of climate change such as extreme heat waves are exacerbated in cities where most of the world's population live. Quantifying urbanization impacts on ambient air temperatures (Tair)… Click to show full abstract
Abstract The impacts of climate change such as extreme heat waves are exacerbated in cities where most of the world's population live. Quantifying urbanization impacts on ambient air temperatures (Tair) has relevance for human health risk, building energy use efficiency, vector-borne disease control and urban biodiversity. Remote sensing of urban climate has been focused on land surface temperature (LST) due to a scarcity of data on Tair which is usually interpolated at 1 km resolution. We assessed the efficacy of mapping hyperlocal Tair (spatial resolutions of 10–30 m) over Oslo, Norway, by integrating Sentinel, Landsat and LiDAR data with crowd-sourced Tair measurements from 1310 private weather stations during 2018. Using Random Forest regression modelling, we found that annual mean, daily maximum and minimum Tair can be mapped with an average RMSE of 0.52 °C (R2 = 0.5), 1.85 °C (R2 = 0.05) and 1.46 °C (R2 = 0.33), respectively. Mapping accuracy decreased sharply with
               
Click one of the above tabs to view related content.