Abstract The proxy for phytoplankton biomass, Chlorophyll a (Chl a), is an important variable to assess the health and state of the oceans which are under increasing anthropogenic pressures. Prior… Click to show full abstract
Abstract The proxy for phytoplankton biomass, Chlorophyll a (Chl a), is an important variable to assess the health and state of the oceans which are under increasing anthropogenic pressures. Prior to the operational use of satellite ocean-colour Chl a to monitor the oceans, rigorous assessments of algorithm performance are necessary to select the most suitable products. Due to their inaccessibility, the oligotrophic open-ocean gyres are under-sampled and therefore under-represented in global in situ data sets. The Atlantic Meridional Transect (AMT) campaigns fill the sampling gap in Atlantic oligotrophic waters. In-water underway spectrophotometric data were collected on three AMT field campaigns in 2016, 2017 and 2018 to assess the performance of Sentinel-3A (S3-A) and Sentinel-3B (S3-B) Ocean and Land Colour Instrument (OLCI) products. Three Chl a algorithms for OLCI were compared: Processing baseline (pb) 2, which uses the ocean colour 4 band ratio algorithm (OC4Me); pb 3 (OL_L2M.003.00) which uses OC4Me and a colour index (CI); and POLYMER v4.8 which models atmosphere and water reflectance and retrieves Chl a as a part of its spectral matching inversion. The POLYMER Chl a for S-3A OLCI performed best. The S-3A OLCI pb 2 tended to under-estimate Chl a especially at low concentrations, while the updated OL_L2M.003.00 provided significant improvements at low concentrations. OLCI data were also compared to MODIS-Aqua (R2018 processing) and Suomi-NPP VIIRS standard products. MODIS-Aqua exhibited good performance similar to OLCI POLYMER whereas Suomi-NPP VIIRS exhibited a slight under-estimate at higher Chl a values. The reasons for the differences were that S-3A OLCI pb 2 Rrs were over-estimated at blue bands which caused the under-estimate in Chl a. There were also some artefacts in the Rrs spectral shape of VIIRS which caused Chl a to be under-estimated at values >0.1 mg m-3. In addition, using in situ Rrs to compute Chl a with OC4Me we found a bias of 25% for these waters, related to the implementation of the OC4ME algorithm for S-3A OLCI. By comparison, the updated OLCI processor OL_L2M.003.00 significantly improved the Chl a retrievals at lower concentrations corresponding to the AMT measurements. S-3A and S-3B OLCI Chl a products were also compared during the Sentinel-3 mission tandem phase (the period when S-3A and S-3B were flying 30 sec apart along the same orbit). Both S-3A and S-3B OLCI pb 2 under-estimated Chl a especially at low values and the trend was greater for S-3A compared to S-3B. The performance of OLCI was improved by using either OL_L2M.003.00 or POLYMER Chl a. Analysis of coincident satellite images for S-3A OLCI, MODIS-Aqua and VIIRS as composites and over large areas illustrated that OLCI POLYMER gave the highest Chl a concentrations and percentage (%) coverage over the north and south Atlantic gyres, and OLCI pb 2 produced the lowest Chl a and % coverage.
               
Click one of the above tabs to view related content.