Previously we observed that bacterial lipopolysaccharide (LPS) was able to instantly convert recombinant murine prion protein (moPrP) from an alpha-helical to a beta-sheet enriched state. The objectives of this study… Click to show full abstract
Previously we observed that bacterial lipopolysaccharide (LPS) was able to instantly convert recombinant murine prion protein (moPrP) from an alpha-helical to a beta-sheet enriched state. The objectives of this study were to evaluate the effects of a single in vitro administration of recombinant moPrP alone or combined with detoxified lipopolysaccharide (D-LPS) on innate immunity and antibacterial gene expression in the colon of male FVB/N mice, under an Ussing chamber system. Results showed that moPrP alone affected the expression of genes related to both toll-like receptor (TLR)- and nod-like receptor (NLR)-signaling as well as pro- and anti-inflammatory responses. moPrP induced a strong antibacterial response with Slpi mRNA over expression (> 9-fold). Combination of moPrP with D-LPS on the mucosal side of the colon induced genes associated with TLR-signaling, apoptosis, and a very strong antibacterial response (> 35-fold Slpi expression). Administration of moPrP on the mucosal side and D-LPS on the serosal side triggered expression of 12 genes related to TLR signaling, apoptosis, and antibacterial responses, as illustrated by overexpression of Slpi by >30-fold. The over expression of Slpi mRNA was further reaffirmed by ELISA and when moPrP was added to the mucosal side and D-LPS on the serosal side, an increased Slpi protein was observed. Application of combined moPrP and D-LPS on the mucosal side significantly increased the Slpi protein. Results of this study demonstrated that moPrP alone or combined with D-LPS affected the expression of various genes related to inflammation, antibacterial, and apoptotic responses.
               
Click one of the above tabs to view related content.