Abstract The coronavirus is a group of viruses found in animals as well as humans and have been detected since the 1960s. However, a newly identified form, SARS-CoV-2, has triggered… Click to show full abstract
Abstract The coronavirus is a group of viruses found in animals as well as humans and have been detected since the 1960s. However, a newly identified form, SARS-CoV-2, has triggered a recent pandemic of respiratory disease now called COVID-19. There is currently no specific antiviral drug for the treatment of this pandemic, with most treatment strategies focused on symptomatic management and supportive therapy. As such, several drug discovery efforts are ongoing for potent treatment agents, with medicinal plants gradually gaining prominence. Approximately 80% of the South African population use traditional medicines to meet their primary health care needs. The current study aimed to identify potential COVID-19 therapeutic agents from a list of 29 bioactive compounds isolated from commonly used South African medicinal plants using molecular docking and molecular dynamics. Molecular docking identified arabic acid from Acacia senegal and L-canavanine found in Sutherlandia frutescens as a potential inhibitor of SARS-CoV-2 3C-like main protease. Similarly, hypoxoside isolated from Hypoxis hemerocallidea and uzarin from Xysmalobium undulatum, were identified as a potential inhibitor of SARS-CoV-2 receptor binding domain and SARS-CoV-2 RNA-dependent polymerase. These four bioactive compounds exhibited favourable binding orientations characterized by strong molecular interactions within respective inhibitors binding pockets of the target enzymes. Molecular dynamics simulations revealed that the binding of the identified inhibitors is characterized by structural perturbations which favour the inhibitory potency of these bioactive compounds. Additionally, in silico pharmacokinetic assessment of the compounds demonstrated favourable anti-SARS-CoV-2 properties. Although not conclusive, further experimental exploration of these compounds could serve as a starting point for the discovery of novel SARS-CoV-2 therapeutic
               
Click one of the above tabs to view related content.