Abstract Geosynthetic clay liners (GCLs) are typically used for widening sections of an embankment. They are also used as low permeability liners to minimize water leakage from reservoirs such as… Click to show full abstract
Abstract Geosynthetic clay liners (GCLs) are typically used for widening sections of an embankment. They are also used as low permeability liners to minimize water leakage from reservoirs such as irrigation ponds. However, few investigations have been carried out on the specific properties of GCLs, such as granulated bentonite sandwiched between geotextiles, their internal shear strength, and the shear strength at the interface between a GCL and an embankment body. In this study, a series of direct box shear tests were performed to determine the shear strength properties of bentonite and compacted soils as well as at the interface between a GCL and bentonite or compacted soil. In addition, a series of field-loading tests were conducted to investigate the failure behaviour of an embankment body containing a GCL when changes in the water content of the bentonite of the GCL in a real embankment occur. Furthermore, the stability of widened embankment bodies that incorporated GCLs were evaluated. The main conclusions of this study are as follows: (1) The shear strength of the interface between the covering soil and geotextiles varied according to the soil type, geotextile type, and the submergence period, (2) the maximum safety factor was observed at the interface between decomposed granite soil and the geotextiles, while the minimum safety factor was observed at the interface between the bentonite and the geotextiles, and (3) the influence of GCLs on the instability of a widened embankment was extremely small.
               
Click one of the above tabs to view related content.