Abstract The liquefaction resistance of sand increases with cyclic pre-shearing and pre-shaking as a result of earthquakes if the strain level in the pre-shearing is small. When larger shear strains… Click to show full abstract
Abstract The liquefaction resistance of sand increases with cyclic pre-shearing and pre-shaking as a result of earthquakes if the strain level in the pre-shearing is small. When larger shear strains are imposed, liquefaction resistance decreases. These complicated effects of pre-shearing histories on the liquefaction resistance are investigated in this study through a series of cyclic triaxial tests. Various combinations of cyclic stress amplitude and number of cycles of pre-shearing are examined. The tested sand is Toyoura Sand at 45% relative density, under a confining pressure of 50 kPa. Test results indicate that for the range of shear strain amplitude in pre-shearing smaller than 0.35%, the liquefaction resistance increases with pre-shearing. The increase in the liquefaction resistance depends strongly on the volumetric strain in the pre-shearing, and several effects of the shear stress amplitude and number of cycles can be negligible. Small volumetric strain of the order of 1% doubled the liquefaction resistance. Meanwhile, in the range of shear strain amplitude larger than 0.6%, the liquefaction resistance decreases. The liquefaction resistance decreases as the shear strain amplitude increases. Shear strain amplitude is one of the factors dominating this degrading effect, and the volumetric strain exerts beneficial effects to a certain extent. In this study, another series of tests are conducted to investigate the combined effects of small and large strain amplitude pre-shearing. It is observed that small shear strain pre-shearing cycles subsequent to large shear strain cycles erased the degrading effect of the latter. However, a large shear strain pre-shearing after small strain cycles degrades the beneficial effect of the small shear strain pre-shearing cycles previously applied to the specimens; however, the effects of the former small strain pre-shearing remains.
               
Click one of the above tabs to view related content.