LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images.

Photo from wikipedia

Thanks to latest technical advances in cryo-electron microscopy (cryo-EM), structures of macromolecular complexes (viruses, ribosomes, etc.) are now often obtained at near-atomic resolution. Also, studies of conformational changes of complexes,… Click to show full abstract

Thanks to latest technical advances in cryo-electron microscopy (cryo-EM), structures of macromolecular complexes (viruses, ribosomes, etc.) are now often obtained at near-atomic resolution. Also, studies of conformational changes of complexes, in connection with their function, are gaining ground. Conformational variability analysis is usually done by classifying images in a number of discrete classes supposedly representing all conformational states present in the specimen. However, discrete classes cannot be meaningfully defined when the conformational change is continuous (the specimen contains a continuum of states instead of a few discrete states). For such cases, first image analysis methods that explicitly consider continuous conformational changes were recently developed. The latest developments in cryo-EM image analysis methods for conformational variability analysis are the focus of this review.

Keywords: conformational variability; cryo electron; microscopy; macromolecular complexes; electron microscopy

Journal Title: Current opinion in structural biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.