LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

cGAS and CD-NTase enzymes: structure, mechanism, and evolution

Photo from archive.org

Cyclic GMP–AMP synthase (cGAS) is a signaling enzyme in human cells that controls immune-sensing of cytosolic DNA. The recent discoveries of diverse structural homologs of cGAS in animals and bacteria… Click to show full abstract

Cyclic GMP–AMP synthase (cGAS) is a signaling enzyme in human cells that controls immune-sensing of cytosolic DNA. The recent discoveries of diverse structural homologs of cGAS in animals and bacteria reveal that cGAS-like signaling is surprisingly ancient and widespread in biology. Together with the Vibrio cholerae protein dinucleotide cyclase in Vibrio (DncV), cGAS and DncV homologs comprise a family of cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes that synthesize noncanonical RNA signals including cyclic dinucleotides, cyclic trinucleotides, and linear oligonucleotides. Structural and biochemical breakthroughs provide a framework to understand how CD-NTase signaling allows cells to respond to changing environmental conditions. The CD-NTase family also includes uncharacterized human genes like MB21D2 and Mab21L1, highlighting emerging functions of cGAS-like signaling beyond innate immunity.

Keywords: cgas; structure mechanism; enzymes structure; biology; cgas ntase; ntase enzymes

Journal Title: Current Opinion in Structural Biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.