LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and functional roles of 2'-O-ribose methylations and their enzymatic machinery across multiple classes of RNAs.

Photo from wikipedia

RNA complexity is augmented by numerous post-transcriptional modifications, which influence RNA function by modulating its structure and interactome. One prominent modification is methylation at the ribose 2'-hydroxyl group. 2'-O-methylation has… Click to show full abstract

RNA complexity is augmented by numerous post-transcriptional modifications, which influence RNA function by modulating its structure and interactome. One prominent modification is methylation at the ribose 2'-hydroxyl group. 2'-O-methylation has been found in all RNA classes, with rRNA and tRNA being extensively modified. The exact function of 2'-O-methylation at specific RNA sites is still not understood, with a few notable exceptions. The relevance of 2'-O-methylation for cell survival and well-being is proven by the large effort that the cell spends in maintaining a diverse and highly regulated methylation machinery. Here, we review the current knowledge on the impact of 2'-O-methylation on structure and function of different RNAs as well as on the factors determining substrate specificity in the enzymatic machinery.

Keywords: methylation; machinery; enzymatic machinery; roles ribose; functional roles; structural functional

Journal Title: Current opinion in structural biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.