LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a computerized adaptive diagnostic screening tool for psychosis

Photo from wikipedia

We develop a two-stage diagnostic classification system for psychotic disorders using an extremely randomized trees machine learning algorithm. Item bank was developed from clinician-rated items drawn from an inpatient and… Click to show full abstract

We develop a two-stage diagnostic classification system for psychotic disorders using an extremely randomized trees machine learning algorithm. Item bank was developed from clinician-rated items drawn from an inpatient and outpatient sample. In stage 1, we differentiate schizophrenia and schizoaffective disorder from depression and bipolar disorder (with psychosis). In stage 2 we differentiate schizophrenia from schizoaffective disorder. Out of sample classification accuracy, determined by area under the receiver operator characteristic (ROC) curve, was outstanding for stage 1 (Area under the ROC curve (AUC) = 0.93, 95% confidence interval (CI) = 0.89, 0.94), and excellent for stage 2 (AUC = 0.86, 95% CI = 0.83, 0.88). This is achieved based on an average of 5 items for stage 1 and an average of 6 items for stage 2, out of a bank of 73 previously validated items.

Keywords: adaptive diagnostic; development computerized; diagnostic screening; computerized adaptive; stage; psychosis

Journal Title: Schizophrenia research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.