Abstract Coconut coir (Cocos nucifera L.), particle size 300–850 μm, has been identified as an adsorbent for safranin-O dye removal from aqueous solution. Bioadsorption efficiency is improved by modifying untreated coconut… Click to show full abstract
Abstract Coconut coir (Cocos nucifera L.), particle size 300–850 μm, has been identified as an adsorbent for safranin-O dye removal from aqueous solution. Bioadsorption efficiency is improved by modifying untreated coconut coir (UCC) with 1 N phosphoric acid (PCC) and 1 N sulphuric acid (SCC). The acid treatment enhances the surface area of adsorbents and accelerates more dye uptake. The adsorption process is optimized by varying the physicochemical conditions like initial pH, adsorbent amount, contact time, initial dye concentration, and temperatures. The adsorption process's optimum pH is 4, 6, and 6, respectively, using UCC, PCC, and SCC adsorbents. In contrast, more than 98% of dye removal has been observed at the lower concentration of dyes up to 200 mg/L at 303 K. Maximum dye removal is possible at 75 mg/L of dye concentration. UCC, PCC, and SCC adsorbents’ adsorption capacity is 80.32 mg/g, 96.81 mg/g, and 89.53 mg/g, respectively, at 303 K temperature. Langmuir and Tempkin model and the pseudo-second-order model are the best-fitted models for isotherm and kinetic study. Thermodynamic parameters indicate the adsorption process is viable, spontaneous, exothermic. 75% glacial acetic acid is the most potent solvent for safranin-O dye extraction from dye loaded biomass. The functional groups and different interactions are identified to establish the adsorption mechanism. The PCC adsorbent has been used for scale-up design. The multiple polynomial regression (MPR) successfully predicts the dye removal efficiency for individual adsorbents. The modeling of the Genetic Algorithm has also been done successfully.
               
Click one of the above tabs to view related content.