LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The use of simultaneous reprogramming and gene correction to generate an osteogenesis imperfecta patient COL1A1 c. 3936 G>T iPSC line and an isogenic control iPSC line.

Photo from wikipedia

To develop a disease model for the human 'brittle bone' disease, osteogenesis imperfecta, we used a simultaneous reprogramming and CRISPR-Cas9 genome editing method to produce an iPSC line with the… Click to show full abstract

To develop a disease model for the human 'brittle bone' disease, osteogenesis imperfecta, we used a simultaneous reprogramming and CRISPR-Cas9 genome editing method to produce an iPSC line with the heterozygous patient mutation (COL1A1 c. 3936 G>T) along with an isogenic gene-corrected control iPSC line. Both IPSC lines had a normal karyotype, expressed pluripotency markers and differentiated into cells representative of the three embryonic germ layers. This osteogenesis imperfecta mutant and isogenic iPSC control line will be of use in exploring disease mechanisms and therapeutic approaches in vitro.

Keywords: line; control; osteogenesis imperfecta; simultaneous reprogramming; ipsc line

Journal Title: Stem cell research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.