LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion

Photo by hautier from unsplash

Abstract In an attempt to improve the hydrogenation kinetics properties of Mg-based materials, a novel Mg65Ce10Ni20Cu5 nanoglass was fabricated by melt spinning followed by severe plastic deformation through the high-pressure… Click to show full abstract

Abstract In an attempt to improve the hydrogenation kinetics properties of Mg-based materials, a novel Mg65Ce10Ni20Cu5 nanoglass was fabricated by melt spinning followed by severe plastic deformation through the high-pressure torsion (HPT) method. The hydrogenation temperature of the nanoglass was greatly reduced with significant improvements on the hydrogenation kinetics upon three different HPT treatments. The 1 turn HPT-treated alloy shows the best hydrogenation properties with the highest capacity and fastest kinetics among the three samples. These superior hydrogenation properties were attributed to the HPT-induced abundant nanoglasses regions and interfaces among them, as pathways for hydrogen absorption.

Keywords: spinning followed; hydrogenation; mg65ce10ni20cu5 nanoglass; hydrogenation properties; melt spinning

Journal Title: Scripta Materialia
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.