LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of single-phase high-entropy carbide powders

Photo from wikipedia

Abstract High-entropy carbide powders were produced by a two-step synthesis process consisting of carbothermal reduction followed by solid solution formation. Nominally pure (Hf,Zr,Ti,Ta,Nb)C in a single-phase rock salt structure had… Click to show full abstract

Abstract High-entropy carbide powders were produced by a two-step synthesis process consisting of carbothermal reduction followed by solid solution formation. Nominally pure (Hf,Zr,Ti,Ta,Nb)C in a single-phase rock salt structure had an average particle size of about 550 nm and an oxygen content of 0.2 wt%. The fine particle size was due to the use of high-energy ball milling prior to carbothermal reduction combined with the relatively low synthesis temperature of 1600 °C. Oxygen content was minimized by completion of the carbothermal reduction reactions under vacuum. This is the first report of synthesizing a high-entropy carbide powder using individual transition metal oxides and carbon as precursors.

Keywords: carbide powders; entropy carbide; high entropy; single phase

Journal Title: Scripta Materialia
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.