Abstract The strength of polycrystals is known to increase with decreasing grain size, known as Hall-Petch effect. However, this relationship fails to predict the strength of samples with a non-uniform… Click to show full abstract
Abstract The strength of polycrystals is known to increase with decreasing grain size, known as Hall-Petch effect. However, this relationship fails to predict the strength of samples with a non-uniform distribution of grain sizes. In this study, we purposely designed and fabricated copper micropillars with a strongly bimodal microstructure: half volume consisted of a large number of ultrafine grains, while the other half was predominantly single-crystalline. Micropillar compression evidenced that bimodal samples are 35% stronger than their counterparts containing only ultrafine grains. This paradoxical finding highlights the greater strengthening potential of microstructure distribution engineering, compared to the traditional grain refinement strategy.
               
Click one of the above tabs to view related content.