LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic correspondence principle in the viscoelasticity of metallic glasses

Photo by timmossholder from unsplash

Abstract We simulate dynamical mechanical spectroscopy in a Cu64Zr36 bulk metallic glass using non-equilibrium molecular dynamics. Applying several loading conditions (constant volume, longitudinal, uniaxial and isostatic), we find that different… Click to show full abstract

Abstract We simulate dynamical mechanical spectroscopy in a Cu64Zr36 bulk metallic glass using non-equilibrium molecular dynamics. Applying several loading conditions (constant volume, longitudinal, uniaxial and isostatic), we find that different elastic moduli have very contrasted dynamical properties but satisfy the dynamic correspondence principle, which states that the relations between static moduli can be extended to dynamical moduli, both below and above the glass transition temperature. In particular, we determine the debated dynamic Poisson's ratio from three different but consistent expressions. Finally, we trace the origin of dissipation down to regions of low stability devoid of icosahedral clusters.

Keywords: viscoelasticity metallic; principle viscoelasticity; correspondence principle; dynamic correspondence

Journal Title: Scripta Materialia
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.