LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ tailoring microstructure in laser solid formed titanium alloy for superior fatigue crack growth resistance

Photo from wikipedia

Abstract For damage tolerance (DT) titanium alloy, the fatigue crack growth resistance (FCGR) is a critical properties requirement for engineering applications. However, the Ti-6Al-4V-DT parts fabricated by laser solid forming… Click to show full abstract

Abstract For damage tolerance (DT) titanium alloy, the fatigue crack growth resistance (FCGR) is a critical properties requirement for engineering applications. However, the Ti-6Al-4V-DT parts fabricated by laser solid forming (LSF) suffer from low FCGR, because of predominant basket-wave microstructure. Here, we have explored a novel LSF fabrication design to produce full colony microstructure, via in-situ controlled growth. The creation of such microstructures leads to superior FCGR, which markedly exceed conventional additive manufactured and mill-annealed samples. The present works provide a significant guidance for LSF-fabricated titanium alloy with high DT properties.

Keywords: fatigue crack; titanium alloy; microstructure; growth resistance; growth; crack growth

Journal Title: Scripta Materialia
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.