LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near atomic-scale comparison of passive film on a 17 wt% Cr-added 18 wt% Mn steel with those on typical austenitic stainless steels

Photo from wikipedia

Abstract The passive films on typical stainless steels (SS) and on a newly developed high-Cr (17 wt%)-added 18 wt%-Mn steel (HCr-HMnS) were compared by Cs-corrected scanning transmission electron microscopy and… Click to show full abstract

Abstract The passive films on typical stainless steels (SS) and on a newly developed high-Cr (17 wt%)-added 18 wt%-Mn steel (HCr-HMnS) were compared by Cs-corrected scanning transmission electron microscopy and atom probe tomography. Although the passive films of all samples having similar Cr contents had the same thickness, unprecedented hexagonal wurtzite MnO inside the passive film of HCr-HMnS specimen was susceptible to corrosion cracking; this was not observed in the SS samples. This MnO caused crack formation during potentiodynamic polarization test, suggesting that reducing the harmful MnO by adding Mo and Ni facilitates the development of high-Mn base SS materials . Furthermore, higher MoO2 composition of the passive films on 316 type austenitic SS than 304 type series might would result in primarily the improved pitting resistance.

Keywords: added steel; stainless steels; passive film; passive films

Journal Title: Scripta Materialia
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.