LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures

Photo by aqaisieh from unsplash

Abstract α-Alumina tight ultrafiltration (UF) membranes maintain high thermal and chemical resistances and show great potential for application to the treatment and reuse of dye/salt in wastewater under harsh conditions.… Click to show full abstract

Abstract α-Alumina tight ultrafiltration (UF) membranes maintain high thermal and chemical resistances and show great potential for application to the treatment and reuse of dye/salt in wastewater under harsh conditions. However, the development of alpha-alumina UF membranes with small pores is challenging. In this study, alumina nanoparticles (AlNPs) were added to boehmite sol as seeds to promote the formation of a single phase α-alumina membrane at low sintering temperature while maintaining a small pore diameter of ∼4.6 nm. The prepared ultra-high purity α-alumina membranes could withstand harsh conditions in the pH range 1–14. Furthermore, this AlNPs doping method increased the porosity and filtration areas of the alpha-alumina UF membranes, significantly enhancing their permeability. The alumina UF membrane displayed a high rejection of the dye molecules and passage of salts. This would allow the reuse of the salts and dyes present in the dye wastewater. When the temperature of the dye wastewater reached 60 °C, the permeability of the UF membrane could be greatly enhanced while maintaining a stable separation efficiency. Overall, this study offers a tight UF membrane (containing ultra-high purity α-alumina) that allows the reuse of the salts and dyes present in wastewater, thereby promoting a sustainable chemical process.

Keywords: wastewater; tight ultrafiltration; dye salt; alumina tight; ultrafiltration membranes; dye

Journal Title: Separation and Purification Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.